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Abstract 
 
 The Decade Quad (DQ) was initially fielded as a large 
area bremsstrahlung (LAB) source.  This utilized the four 
Decade modules (DM) triggered simultaneously but each 
driving a separate hard x-ray bremsstrahlung radiation 
source (BRS). Recently, water convolute hardware was 
installed that combines the power from the four Decade 
modules to drive a soft x-ray plasma radiation source 
(PRS). The water convolute configuration also enables 
the use of a monolithic plasma opening switch (MPOS) 
for driving a common BRS or PRS load. 
 The work reported here was performed in support of 
the use of an ACE 4 type POS on DQ. The modeling 
included equivalent circuit and DELTA-CREMIT 
magneto-hydrodynamic (MHD) simulations. The circuit 
analysis extracted equivalent circuit parameters from 
ACE 4 data and applied them to the planned DQ MPOS-
BRS configuration. The MHD analyses evaluated 
strategies to optimize the DQ MPOS. 
 
 
I.  DQ MPOS APPROACH 
 
 POS scaling on large pulsed power drivers has always 
been problematic, as scaling implies an understanding of 
the dominant physics of the POS.  A modeler must 
identify the dominant physics - erosion or Hall MHD or 
MHD � and each of these may apply in a different part of 
the POS. A full understanding of POS physics, especially 
at the higher power levels of DM and DQ drivers, has yet 
to be achieved.  Fully integrated modeling of even the 
known physics is not yet practical. 
 The applicability of the ACE 4 POS for the DQ MPOS 
is based on the observed performance of ACE 4 with both 

BRS and PRS loads1,2. Simulations and experimental 
results suggest that one important parameter 
characterizing an ACE 4 type POS is the IC*TC product 
where IC is the peak conducted current and TC is the 
conduction time.  This corresponds to MHD dominance 
during the conduction phase. The ACE 4 POS experience 
includes the 2.4 MA-µs IC*TC product of the DQ MPOS 
(8 MA in 300 ns). Calculations and interferometry imply 
that many of the critical plasma conditions at the onset of 
POS opening are closely preserved if the IC*TC product is 
held constant. In addition, the circuit analysis of 
Section II suggests that the performance of the ACE 4 
POS is not far from that required of the DQ MPOS. 
 Modeling of the ACE 4 POS has nearly quantitatively 
reproduced the observed plasma conditions at the onset of 
opening. They also have shown that these plasma 
conditions are strongly dependent on initial conditions 
and geometry. This offers an opportunity to investigate 
DQ MPOS optimization computationally in advance of 
experiments, as will be presented in Section III. 
  
 
II. MPOS CIRCUIT MODELING 

 
   Figure 1 shows the POS-BRS geometry being 
implemented on DQ. On ACE 4, diagnostics implied that 
this configuration exhibits a two-switch, 
primary/secondary, composite nature as reflected in the 
equivalent circuit of Figure 2. There are insufficient 
experimental data to uniquely determine the characteristic 
circuit parameters  tOpen, ZflowPeak, and tClosing; the 
opening time, peak Zflow, and closing time for both 
switch regions and LDS, the inductance remaining 
downstream of the secondary switch opening region. 
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Figure 1. ACE 4 �Catcher�s Mitt� POS geometry. 
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Figure 2.  Equivalent circuit explicitly displaying the two 

region opening nature of the ACE 4 type POS. 
 
 Since we expect that the net open impedance of the 
POS is set by the secondary switch, we adopt for the 
purposes of the following analysis, the simpler equivalent 
circuit of Figure 3.  This circuit takes into account the 
inductance between the primary and secondary switch 
regions by lumping it in with the inductance upstream of 
the switch. 
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Figure 3. Simplified equivalent circuit utilizing a single 

�equivalent lumped circuit� POS. 
 

A comparison of the results from such a simplified 
equivalent circuit and the experimental data show 
reasonable agreement during the opening time of the 
secondary switch as shown in Figure 4.  The differences 
prior to secondary switch opening are primarily due to 
our accounting of the inter-switch inductance and does 
not affect the determination of the POS opening 
parameters. We used the commercial circuit simulation 
code, MicroCap, for our calculations. Non-standard 
circuit elements, the POS and e-beam diode in particular, 
were modeled incorporating the relevant parameters. 
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Figure 4. Typically good agreement between model and 
experimental data is seen during POS opening. 

 
Table 1 gives POS parameters derived from a number 

of shots with both shorted and active loads. Table 1 also 
reflects an observed conditioning effect seen in the first 
few shots taken with a newly machined cathode.  The 
circuit analysis results imply that the POS opening 
parameters are relatively independent of both the IC*TC 
product and the load impedance, but are affected by 
initial conditioning. 

 
Table 1. Derived POS parameters for unconditioned 

(UC) and conditioned (C) POS cathodes. 
 

Load 
 

UC
/C 

Shot 
# 

IC*TC 

(MA-µµµµs) 
tOpen 
(ns) 

ZPeak 
(ΩΩΩΩ) 

UC 2840 2.3 30 0.22 Shorted 
Diode UC 3018 4.7 25 0.20 
 C 2848 5.0 15 0.26 

C 3037 4.5 15 0.26 e-Beam 
Diode C 3048 5.0 15 0.25 

 
 Figure 5 shows an example of the application of the 
simplified equivalent circuit to the DQ MPOS.  The 
objective was to deliver 290 kJ to the e-beam load.  This 
required that the ZflowPeak be increased by a factor of two 
above the ACE 4 result to 0.5 Ω. Also, the POS-to-BRS 
inductance needed to be reduced by a factor of two.  The 
first requirement implies that the switch behavior needs 
to be improved; see Section III. The second requirement 
can likely be met more easily; the ACE 4 results implied 
that the unoptimized inductance between the secondary 
switch region and the e-beam load could be reduced 
significantly. 



 
Figure 5. DQ circuit simulation that delivers 290 kJ to 

the BRS load. 
 
 
III. MPOS OPTIMIZATION 
 

 As noted above, successful use of the ACE 4 POS on 
DQ will require a factor of two increase in the open 
impedance of the POS.  We review here MHD models of 
ACE 4 experiments that suggest very practical methods 
to achieve that goal. 
    Figure 6 shows the ACE 4 POS-to-BRS configuration 
(rotated 90 degrees counterclockwise relative to Figure 1) 
with an overlay of the measured 2D chordal, 
line-integrated electron density observed during opening. 
The density data show the presence of a low density 
plasma that bridges a gap between the forward 
propagating, snowplowed POS plasma and the anode.  
The apparent secondary opening region as inferred by 
current probe measurements is cartooned.  We conjecture 
that the secondary switch plasma originates from the 
plasma bridge.  We also expect that the open impedances 
of both switch regions are controlled by the magnitudes 
of their plasma densities. 
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Figure 6.  ACE 4 characterized POS-BRS configuration 

showing the observed density profile of 
primary switch region plasma. (The secondary 
switch opening region is inferred). 

 
 Using the coupled MHD and radiation/ionization 
modeling of the DELTA and CREMIT codes, 
Thompson1,2 has shown that many of the features of the 
density data of Figure 6 can be reproduced in the models, 

in particular the low density plasma bridge.  If we can 
reduce the density of that bridge, then we have a strategy 
for increasing the open impedance of the POS.   
 Using the MHD code, a number of variations in the 
POS geometry were studied to see how the plasma bridge 
density varied. The calculations were performed in the 
ACE 4 parameter space to retain a close connection to the 
existing experimental data. Under IC*TC = constant 
scaling, the trends if not the quantitative changes, should 
transfer to the DQ MPOS. 
 Figure 7 shows two promising geometries investigated 
for BRS and PRS loads. The figure also depicts 
alternative 2D POS anode models used in an attempt to 
bracket the behavior of the real 3D POS mesh anode 
structure. It turned out that to first order, the results were 
independent of the choice in modeled anode geometry. 
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Figure 7.  Geometries evaluated for MPOS optimization 

for BRS (left) and PRS (right) loads. 
  
   For the BRS load configuration, a �mini-catcher�s mitt� 
�like, plasma trap was implemented on the anode.  This 
reduced the contribution to the bridge plasma due to 
plasma snowplowed into and sliding along the anode 
surface during the conduction phase. A 
DELTA-CREMIT simulation is shown in Figure 8 
indicating the location of the mass density lineouts. 
During the expected opening time, both the peak and 
line-integrated bridge plasma mass density profiles are 
reduced by a factor of 3-4 compared to the geometry of 
Figure 6.  A reduction of this magnitude should 
significantly improve the opening in both the primary and 
secondary switch regions. 
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Figure 8.  Typical plasma bridge density profiles near 
anode for an optimizing BRS load geometry. 
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   The prospect that POS-BRS coupling can be optimized 
with the appropriate POS geometry leads us to expect that 
coupling to a soft x-ray PRS load may also be improved.  
But for POS-to-PRS optimization, the strategy is 
somewhat different.  Figure 9 shows a POS driven PRS 
configuration that was tested on ACE 4; the figure 
includes an overlay of the forward propagating, 
snowplowed plasma as measured in the POS-BRS 
configuration. Here opening at the anode is problematic 
in that the lower density bridge plasma (where primary 
opening is believed to occur) interacts with the return 
current anode structure. Additionally, the downstream 
current path to the PRS load is typically shorted out by 
the forward propagating, snowplowed plasma along the 
cathode before the PRS implosion is complete.  
Optimization for a PRS load would therefore require the 
opening near the cathode rather than the anode. 
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Figure 9.  ACE 4 characterized POS-PRS configuration 

(chordal density profile from BRS shots) 
 
 For PRS load optimization using the MHD codes, the 
downstream cathode geometry was modified with a 
transparent boundary condition at the cathode surface as 
shown in Figure 7.  Experimentally, this would be 
implemented by a highly transparent axially oriented wire 
array.  Here, a �mini-catcher�s mitt� -like plasma trap 
geometry is in the cathode. This configuration reduces the 
downstream plasma density near the cathode encountered 
by the snowplowed POS plasma.  The surface pile-up 
normally associated with the cathode surface is then 
interior to the effective cathode surface. This change 
allows the snowplow front near the cathode to advance 
more rapidly, becoming nearly perpendicular to the 
cathode as it runs off the electrode end, reducing the 
inward radial component of the snowplowed plasma. This 
should enable opening near the cathode in the same way 
that modeling suggests of the formation of the low 
density bridge at the anode in the bremsstrahlung case. 
 
 
 

   Figure 10 shows the results of a MHD simulation for 
the PRS case. This configuration flips the low density 
bridge from the anode to the cathode.  This offers the 
possibility of both better opening and elimination of early 
time switch shorting. 
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Figure 10.  Typical plasma bridge density profiles near 

cathode for optimizing PRS load geometry. 
 
 
IV. SUMMARY 

  
 Electrical circuit and MHD simulations were performed 
in support of the implementation of a MPOS on DQ.  The 
circuit models suggest that an ACE 4 type POS-BRS 
configuration may achieve the goal of 290 kJ in the 
e-beam if downstream inductance is decreased by 50% 
and if the POS open impedance is increased by a factor of 
two.  Existing ACE 4 data imply that the reduced 
inductance should be achievable. MHD models let us 
expect that with IC*TC = constant scaling, higher open 
impedance can be reached with simple changes in the 
downstream geometry of the POS.  Such changes should 
benefit both hard x-ray BRS and soft x-ray PRS loads. 
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